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Abstract.
Background: BOLD signals in the gray matter (GM) and white matter (WM) are tightly coupled. However, our understanding
of the cross-tissue functional network in Alzheimer’s disease (AD) is limited.
Objective: We investigated the changes of cross-tissue functional connectivity (FC) metrics for the GM regions susceptible
to AD damage.
Methods: For each GM region in the default mode (DMN) and limbic networks, we obtained its low-order static FC with any
WM region, and the high-order static FC between any two WM regions based on their FC pattern similarity with multiple
GM regions. The dynamic and directional properties of cross-tissue FC were then acquired, specifically for the regional pairs
whose low- or high-order static FCs showed significant differences between AD and normal control (NC). Moreover, these
cross-tissue FC metrics were correlated with voxel-based GM volumes and MMSE in all participants.
Results: Compared to NC, AD patients showed decreased low-order static FCs between the intra-hemispheric GM-WM pairs
(right ITG-right fornix; left MoFG-left posterior corona radiata), and increased low-order static, dynamic, and directional
FCs between the inter-hemispheric GM-WM pairs (right MTG-left superior/posterior corona radiata). The high-order static
and directional FCs between the left cingulate bundle-left tapetum were increased in AD, based on their FCs with the GMs
of DMN. Those decreased and increased cross-tissue FC metrics in AD had opposite correlations with memory-related GM
volumes and MMSE (positive for the decreased and negative for the increased).
Conclusion: Cross-tissue FC metrics showed opposite changes in AD, possibly as useful neuroimaging biomarkers to reflect
neurodegenerative and compensatory mechanisms.
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INTRODUCTION

The pathological hallmarks of Alzheimer’s disease
(AD) were the amyloid aggregations and neurofibril-
lary tangles [1]. Gray matter (GM) atrophy in the
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medial temporal lobe was the most prominent struc-
tural abnormality of AD [2]. Regarding functional
connectivity (FC), consistent findings were the
decreased FCs in the default mode network (DMN)
and limbic network [3–5]. Moreover, increased FCs
were found in various locations, especially in the
salience and executive networks, indicating the com-
pensatory changes [6–9].

Previous functional network studies mainly foc-
used on the FC between two GM regions to reveal the
AD’s neurodegenerative and compensatory changes.
Recently, an emerging field delved into the tempo-
ral synchronization between GM and white matter
(WM) regions, as the BOLD signal changes detected
in the two tissues were tightly coupled through
biochemical and vascular processes [10–13]. This
novel neuroimaging biomarker, cross-tissue FC, has
been applied in the studies of AD, mild cognitive
impairment, major depressive disorder, and epilepsy
[14–17]. A recent study demonstrated that using the
cross-tissue FC could achieve a superior classifi-
cation accuracy between AD and normal controls
(NC), compared to using the FC within GM alone
[15].

Most previous studies viewed the cross-tissue
connection as stable across time. However, the syn-
chronization of BOLD signals between WM and GM
often fluctuated over time, and this transient feature
could be described by the coefficient of temporal vari-
ation (CV) [18–20]. Evidence showed that the CV
was lower in the primary sensory and motor net-
works and higher in the DMN, possibly reflecting
the balance of stability and flexibility of different net-
works’ configurations [20–22]. This balance might be
shifted in neurological disorders, with the enhanced
CV indicating a more adaptable change to compen-
sate for the pathological-related inefficiency [23, 24].
The directional property illustrated the direction of
information flow, measured by effective connectiv-
ity (EC) [25–28]. A positive EC from Region X to
Region Y indicates that the neural activity in the for-
mer region exerts an enhancing effect on the latter’s
activity [29, 30]. To our knowledge, the dynamic and
directional properties of cross-tissue FC metrics were
rarely explored in previous studies.

Unlike the traditional low-order FC that focused
on temporal synchronization between two regions,
the high-order FC emphasized the similarity between
two regions on their correlation profiles with multiple
regions, also referred to as the “correlation of correla-
tions” [31]. The high-order network could reflect the
complex hierarchical architecture [32, 33]. A recent

study included the high-order FC in the classification
analysis and found the sensitivity improved by ∼25%
in distinguishing amnestic mild cognitive impairment
(aMCI) and NC [32]. An increased high-order FC
between two regions could be due to their functional
resemblance, or their shared pathological process;
both reasons could enhance their similarity in topo-
logical profiles.

Our recent study employed a low-order static FC
metric to characterize the cross-tissue network’s
topological changes in AD and showed both
increased and decreased changes, distributed in var-
ious GM and WM regions (https://www.biorxiv.
org/content/10.1101/2021.08.30.458154v1). As the
compensatory changes functioned as an offset for
the neurodegenerative-induced neural inefficiency,
we wondered how the cross-tissue FC would change
for the GM regions that were particularly vulnera-
ble to AD’s pathological damage. With these GM
regions as our region-of-interest (ROIs), several ques-
tions were raised: 1) is it possible that there were both
decreased and increased cross-tissue FCs for these
ROIs in AD? 2) How would these cross-tissue FC
changes in AD spatially distribute? 3) What mecha-
nisms were underlying these changes? 4) How would
the high-order FC between two WM regions (based
on their FCs with one network’s GMs) change in AD,
and what were the underlying reasons?

To address these questions and deepen our under-
standing of cross-tissue FC, we generated two layers
of cross-tissue FC (i.e., low- and high-order FC) and
examined each layer’s static, dynamic, and direc-
tional properties. The GM ROIs were restricted in
the DMN and limbic networks, while the whole-brain
WM regions were used as there was no consensus on
the vulnerable WM regions in AD. We first calcu-
lated the static low-order FCs and high-order FCs,
and then compared them between AD and NC, as
the static metrics could provide us with a general
intrinsic FC pattern between cross-tissue regions’
spontaneous neural activities, without presumptions
on the causal model and temporal precedence. We
then adopted a data-driven approach to quantify the
dynamic and directional properties for specific GM-
WM pairs/WM-WM pairs whose low-/high-order
static FCs showed significant group differences, and
then compared them between the two groups. Fur-
thermore, we performed correlation analyses for
these cross-tissue FC metrics with voxel-based GM
volumes and cognitive performance in all participants
to illustrate their neuroanatomical basis and cognitive
relevance.

https://www.biorxiv.org/content/10.1101/2021.08.30.458154v1
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METHODS

ADNI database

The present study used the open database, the
Alzheimer’s Disease Neuroimaging Initiative (AD
NI), to acquire data. ADNI was launched in 2004
to investigate AD and its prodromal stages (http://
www.adniinfo.org). ADNI included four databases
(ADNI-1, ADNI-2, ADNI-3, ADNI-GO). An initial
five-year study, termed ADNI-1, was followed by
two renewal five-year studies termed ADNI-2 and
-3; and ADNI-GO enrolled early MCI participants
[34]. Consistent with previous studies on the database
selection for the resting-state functional magnetic res-
onance imaging (rs-fMRI) images of AD patients,
we only used the data from ADNI-2, as the ADNI-1
phase did not collect rs-fMRI data, and the ADNI-
3 phase included the longitudinal data of ADNI-2
[35, 36].

According to the standardized protocol, the ADNI
data was collected from various acquisition sites
across Canada, and the United States, approved by
the Institutional Review Board at each acquisition
site, and written informed consent was obtained from
each participant.

Participants

The ADNI-2 imaging data were collected at multi-
sites, with different scanners and parameters [37]. To
alleviate the scanner effect, we carefully checked the
scanner information and only used the image data
acquired by the same scanner with same acquisition
parameters. The inclusion criteria for the partici-
pants: 1) a clinician-confirmed diagnosis of AD or
“normal” at the screening visit; and 2) the complete
resting-state fMRI data available for the participants
at their first scan time in the ADNI 2 database; 3)
the participants scanned by a 3.0T Philips scanner
with the same acquisition parameters (see below for
the parameters). In total, 30 AD patients and 37 NC
were included in this study. The sample sizes of AD
and NC were comparable with previous AD studies
that used ADNI rs-fMRI data [35, 36]. No significant
differences were found between the two groups on
age and gender (Table 1).

Image acquisition and preprocessing

The rs-fMRI data were obtained using an
echo-planar imaging (EPI) sequence with the

following parameters: repetition time (TR) = 3000
ms, echo time (TE) = 30 ms, flip angle (FA) = 80◦,
number of slices = 48, slice thickness = 3.313 mm,
voxel size = 3 × 3 × 3 mm3, voxel matrix = 64 × 64,
and total volume = 140. The T1-weighted images
were acquired using the following parameters:
TR = 6.8 ms, TE = 3.1 ms, FA = 9◦, slice thickness =
1.2 mm, number of slices = 170, voxel size = 1.1 ×
1.1 × 1.2 mm3, acquisition matrix = 244 × 244.

Rs-fMRI images were preprocessed using the Data
Processing and Analysis of Brain Imaging soft-
ware package (DPABI, http://rfmri.org/dpabi) and the
SPM12. The preprocessing procedure consisted of
eight steps: 1) discarding the first ten volumes; 2)
slice-timing (the slice order sequence was the same
for all participants); 3) head motion correction (the
maximum motion threshold ≤ 2 mm or 2◦); 4) nor-
malization to the EPI template and resampled to
3 × 3 × 3 mm3; 5) detrend; 6) nuisance covariates
regression (Friston 24 for head motion, global signal,
and cerebrospinal fluid signal regression); 7) tempo-
ral scrubbing (the scan volume with the frame-wise
displacement (FD) > 1 was removed); and 8) band-
pass filter (0.01 Hz–0.15 Hz) to reduce low-frequency
drift and high-frequency physiological noise [38, 39].
One AD participant was removed from this study
due to the maximum head motion beyond the thresh-
old. Notably, we used the EPI template (provided by
SPM, in standardized MNI space) for normalization,
which generated satisfactory results. We also tried
the normalization with T1 images using the DAR-
TEL method, which generated poor quality results
with parts of brain distortion, missing, or spatial mis-
match. Previous AD studies have also used the EPI
template for rs-fMRI normalization, instead of the
T1 image, possibly due to severe structural atrophy
of AD patients [40–43].

Low-order FC metrics between WM and GM

Static property: low-order FC (LOFC)
According to the Human Brainnetome Atlas, there

were 58 GM regions in the DMN and 28 GM regions
in the limbic network [44–47]; we chose them for
the calculation of GM-WM FC metrics. The whole-
brain WM regions (n = 48) were used, based on the
John Hopkins University WM tractography atlas (see
Fig. 1-I/II for the flow chart). The spatial distribu-
tion and details information for all the GM and WM
regions used in our study were provided in the Sup-
plementary materials (Supplementary Table 1 and
Supplementary Figure 1 for the GM regions, and

http://www.adniinfo.org
http://rfmri.org/dpabi
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Fig. 1. The calculation pipeline of functional connectivity metrics. Every functional connectivity (FC) metric calculated in this study followed
this flow diagram. Maps I and II indicated the spatial distribution of whole-brain WM regions and the GM regions in the default mode network
(DMN) and limbic network (LN) for the following calculations. Map III indicated the procedure of calculating low-order FC metrics between
each pair of GM and WM regions, A) for the static property, B) for the dynamic property, and C) for the directional property. Map IV indicated
the high-order FC metrics that described the spatial similarity between each pair of WM regions, based on their correlation patterns with
multiple GM regions, D) for the static property, E) for the dynamic property, and F) for the spatial similarity of a pair of WM regions, based
on their directional correlation patterns with multiple GM regions.

Supplementary Table 2 and Supplementary Figure 2
for the WM regions).

Using the pre-processed rs-fMRI images, we
extracted voxel-wise time series from each GM and
WM region, and then obtained the average time series
of each region using the DPABI software. The Pear-
son’s correlation coefficient between each GM region

in the DMN or limbic network and each WM region
was calculated, and then transformed by Fisher-z
transformation. As such, two matrices with 58∗48 and
28∗48 correlation coefficients were obtained for each
participant, and the low-order GM-WM FC (LOFC)
was generated. This procedure was shown in the cal-
culation pipelines of Fig. 1-III.
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Table 1
Demographic characteristics and neuropsychological test results

Characteristic NC (n = 37) AD (n = 30) Test statistic p

Age (y) 75.84 ± 7.09 73.14 ± 6.51 T = –1.59 0.117a

Sex (male/female) 13/16 14/23 χ2 = 0.329 0.566b

MMSE (NC/AD n = 24/22) 29.29 ± 1.37 20.82 ± 3.43 T = –11.18 < 0.001a

CDR (NC/AD n = 24/22) 0.02 ± 0.10 0.93 ± 0.32 / /

Data are presented as the mean ± SD. NC, normal control; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; CDR, Clinical
Dementia Rating Scale. aThe p-value was obtained by the two-sample two-tailed t-test. bThe p-value was obtained by the two-tailed Pearson
χ2 test.

Fig. 2. LOFC between GM of the limbic network and whole-brain WM. The static low-order FC (LOFC) between each GM region of
the limbic network (LN) and each of the whole-brain WM regions was calculated and compared between AD patients and NC. Maps I
and II showed the average LOFC matrices in AD group and NC group, respectively. Map III showed the T-value matrix derived from the
comparison between Maps I and II, adjusted for age, gender, mean frame-wise displacement for head motion. The significance threshold was
set at p < 0.05 (FDR-corrected). Map IV showed the spatial locations of the GM and WM regions (purple sphere: GM region, green sphere:
WM region) whose LOFC was significantly different between the two groups (blue line: AD < NC, red line: AD > NC). Map V showed the
mean and standard deviation of that LOFC in each group. ITG, inferior temporal gyrus.

Dynamic property: Coefficient of variation of
low-order FC (LOCV)

Based on the comparison result between AD and
NC on the LOFC, we chose the GM-WM pairs whose
LOFC showed significant or almost significant differ-
ences (p < 0.05 or 0.07, FDR-corrected) to calculate
its dynamic property. Based on pre-processed rs-
fMRI data, we adopted a sliding-window approach

with the time window length (TWL) varying from
30 to 60 s with an incremental length of 1 TR,
i.e., 3 s (TWL = 30, 33, 36, . . . , 60 s), in order to
avoid the arbitrary choice of TWL [48]. Whatever
the TWL was, the difference between two neighbor-
ing time windows (i.e., step size) was one TR (e.g.,
TWL = 11TR, the time window ranging as 1∼11TR,
2∼12TR, 3∼13TR . . . ). The band-pass filter was
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Fig. 3. LOFC between GM of the DMN network and whole-brain WM. The static low-order FC (LOFC) between each GM region of the
default mode network (DMN) and each of the whole-brain WM regions was calculated and compared between AD patients and NC. Maps
I and II showed the average LOFC matrices in AD group and NC group, respectively. Map III showed the T-value matrix derived from the
comparison between Maps I and II, adjusted for age, gender, mean frame-wise displacement for head motion. The significance threshold was
set at p < 0.05 (FDR-corrected). Map IV showed the spatial locations of the GM and WM regions (yellow sphere: GM region, green sphere:
WM region) whose LOFCs were significantly or almost significantly (p < 0.07) different between the two groups (blue line: AD < NC, red
line: AD > NC). Map V showed the mean and standard deviation of those LOFCs in each group. MTG, middle temporal gyrus; MoFG,
middle orbitofrontal gyrus; PCR, posterior corona radiata; SCR, superior corona radiata.

set at 1/TWL–0.15 Hz to remove spurious fluctu-
ations [49]. Based on the Fisher-z transformation
method, the variation of LOFC across all time win-
dows for each TWL was calculated as CV = SD/mean
(standard deviation and mean of the LOFC values).
Finally, the arithmetic average of CVs for all TWLs
was calculated and referred to as the LOCV in this
study (see Fig. 1-III for the procedure).

Directional property: Effective connectivity of
low-order FC (LOEC)

Same as the LOCV, the GM-WM pairs that showed
significant or almost significant group differences
in LOFC were chosen for the directional property
calculation. We performed the Granger causality
analysis using the REST-GCA toolbox to gener-
ate the bivariate first-order coefficient-based EC
(http://www.restfmri.net). For a pair of GM and WM
regions, two ECs were calculated based on their
BOLD signals: the causal effect from Region X to
Region Y, as well as the causal effect from Region
Y to Region X. A positive EC from X to Y indicates
that Region X’s activity exerts an enhancing effect
on Region Y’s activity. Meanwhile, a negative EC

from X to Y suggests that Region X’s activity exerts
an inhibitory effect on Region Y’s activity. The two
LOECs for each GM-WM pair were referred to as
LOEC-GW for the EC from GM to WM, and vice
versa for LOEC-WG (see Fig. 1-III for the proce-
dure).

High-order FC metrics between WM and WM

Static property: High order FC based on LOFC
(HOFC)

We employed a high-order FC method, to estimate
the similarity of two WM regions on their corre-
lation patterns with multiple GM regions [50]. In
the procedure of calculating the LOFC of the DMN
network, each column of the matrix represented the
correlation pattern of one WM region with 58 GM
regions of the DMN network. Next, the Pearson’s
correlation was obtained between any two columns
and then Fisher z-transformed to generate a 48∗48
correlation matrix for each individual. The generated
value was referred to as high-order FC between two
WM regions (HOFC), signifying the coherence of
FC profiles between any two WM regions on their

http://www.restfmri.net
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Fig. 4. Differences of LOCV and LOEC between AD and NC. Based on the data-driven approach, we found four GM-WM pairs whose static
low-order FCs (LOFCs) were significantly or almost significantly different between AD and NC. Their dynamic (coefficient of variation
of low-order FC, LOCV) and directional (effective connectivity of low-order FC, LOEC) properties were calculated and then compared
between AD patients and NC, adjusted for age, gender, mean frame-wise displacement for head motion. The significance threshold was set
at p < 0.05 (FDR-corrected). On the left column, the results were based on the GM regions of limbic network; Maps I, II, and III showed the
spatial location of one GM-WM pair, the mean and standard deviation of LOCV, LOEC-GW, and LOEC-WG of that pair and the comparison
result (purple sphere: GM region, green sphere: WM region). On the right column, the results were based on the GM regions of DMN; Maps
IV, V, and VI showed the spatial location of three GM-WM pairs, the mean and standard deviation of LOCV, LOEC-GW, and LOEC-WG
of those pairs in each group and the comparison results (yellow sphere: GM region, green sphere: WM region; red line: AD > NC). ITG,
inferior temporal gyrus; MTG, middle temporal gyrus; MoFG, middle orbitofrontal gyrus; PCR, posterior corona radiata; SCR, superior
corona radiata.

synchronization with the DMN’s GM regions. The
same procedure was also applied to the HOFC of
48 WM regions with 28 GM regions of the limbic
network (see the calculation pipelines of Fig. 1-IV).

Dynamic property: Coefficient of variation of
HOFC (HOCV)

For the WM-WM pair whose HOFC showed sig-
nificant differences between AD and control group
(p < 0.05, FDR-corrected), we examined its tempo-
ral variation of HOFC across time windows. Similar
to the method of calculating LOCV, we used the

sliding-window approach (TWL = 30, 33, 36, . . . ,
60 s) and variable band-pass filter settings at
1/TWL–0.15 Hz to process the rs-fMRI data. For
one WM-WM pair, the correlation pattern between
each WM region and multiple GM regions was
firstly acquired at each time window. Subsequently,
the “correlation of the correlation patterns” of the
two WMs was calculated, and its variation across
all time windows for each TWL was calculated
as CV = SD/mean. Finally, the arithmetic average
of CVs across different TWLs was obtained and
referred to as the HOCV in this study. This procedure
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(Fig. 1-IV) was applied separately for the calculation
of HOCV with the DMN and limbic networks.

Directional property: High-order FC based
LOEC (HOEC)

Same as the HOCV, the WM-WM pairs that
showed significant group differences in HOFC were
chosen for this step. As described above, the BOLD
signals between two regions could establish two
directions of causality. Each WM region would
have two LOEC patterns with multiple GM regions,
the LOEC-GW indicating the causal direction from
multiple GM regions to one WM region and the
LOEC-WG indicating the causal direction from one
WM region to multiple GM regions. Therefore, two
high-order EC metrics between two WM regions
were generated: HOEC-GW (based on their profiles
of LOEC-GW) and HOEC-WG (based on their pro-
files of LOEC-WG). This procedure (Fig. 1-IV) was
applied separately for the GM regions in the DMN
and limbic network.

Statistical analysis

We compared the differences between AD and NC
on the four low-order FC metrics (LOFC, LOCV,

LOEC-GW, and LOEC-WG) and four high-order
FC metrics (HOFC, HOCV, HOEC-GW, and HOEC-
WG), with the False Discovery Rate (FDR) method to
correct for multiple comparisons. All analyses were
controlled for age, gender, and mean FD of head
motion. Regarding the multi-site issue on scanner, we
used the image data scanned by 3.0T Philips scan-
ner with the same acquisition parameters to ensure
the reliability and consistency. Numerous studies that
used ADNI dataset have not controlled the scanner as
the covariates [36, 50–52].

Additionally, without the restriction of data-driven
approach to specific GM-WM pairs, we compared the
differences between AD and NC on the low-/high-
order EC and CV metrics for all pairs. Accordingly,
the results were corrected for multiple comparisons
with the FDR method for all pairs, and were demon-
strated in the supplementary materials. Although the
analyses of all pairs could provide us with extra
information, their assumptions required some cau-
tion. According to Friston, the EC should be based on
a causal model that describes the dynamics between
neural activities [53]. Yet, to estimate the LOEC-GWs
of all GM-WM pairs, the assumption would be that
all GM regions simultaneously exert influences on
all WM regions, which might not fit the biological

Fig. 5. Static HOFC between two WM regions. The static high-order functional connectivity (HOFC) between any two WM regions based
on their correlation patterns with the GM region of DMN were calculated and compared between AD patients and NC. Maps I and II showed
the average HOFC matrices in AD group and NC group, respectively. Map III showed the T-value matrix derived from the comparison
between Maps I and II, adjusted for age, gender, mean frame-wise displacement for head motion. The significance threshold was set at
p < 0.05 (FDR-corrected). Map IV showed the spatial locations for the WM regions whose HOFC was significantly different between the
two groups (red line: AD > NC). Map V showed the mean and standard deviation of HOFC for this WM-WM pair in each group.
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reality. Regarding the CV, it has been suggested
that the time-varying connectivity could appear in
randomized regional pairs that shared no temporal
information [54], implying the difficulty in interpre-
tation of the LOCVs for all GM-WM pairs. Another
problem with the analysis for all pairs was that the
results on FC, EC, and CV would be in parallel and
may not be relevant to each other.

Correlation analysis with voxel-based gray
matter volume and Mini-Mental State
Examination (MMSE)

To examine the relationships of these novel FC
metrics with the classic structural measure, we
employed the voxel-based morphometry (VBM)
approach to obtain the voxel-based GM volume
using the Statistical Parametric Mapping software
(SPM12, http://www.fil.ion.ucl.ac.uk/spm). After the
visual inspection for structural abnormalities, the T1-
weighted images were segmented using the hidden
Markov random field. A series of customized tem-
plates and flow fields were then generated using
the diffeomorphic anatomical registration through

an exponentiated lie algebra (DARTEL) registra-
tion method. The images were then registered to the
customized templates and normalized to the Mon-
treal Neurological Institute (MNI) space. Finally, the
images were smoothed with a 9 mm full-width at
half-maximum (FWHM) Gaussian kernel. The cor-
relation analysis between various FC metrics and
voxel-based GM volumes was performed in SPM12,
controlled for age, gender, mean FD, and total
intracranial volume. The multiple correction method
was based on Gaussian Random Field, with the sig-
nificance threshold set at the voxel-level p < 0.005
(uncorrected) with a cluster-level p < 0.05 (FWE-
corrected). Additionally, we used two smoothing
kernels (FWHM = 12 mm and 6 mm) to pre-process
T1 images, and then correlated the voxel-based GM
volumes with the cross-tissue FC metrics, to exam-
ine the influence of different smoothing kernels on the
results of VBM analysis; and the results were shown
in the Supplementary Material.

We also performed the correlation analysis
between each cross-tissue FC metric and the MMSE
score in all participants, controlling for age, gender,
and mean FD.

Fig. 6. Differences of HOCV and HOEC between AD and NC. Based on the data-driven approach, we found one WM-WM pair whose static
how-order FC (HOFC) was significantly different between AD and NC. Their dynamic (coefficient of variation of high-order FC, HOCV)
and directional (effective connectivity of high-order FC, HOEC) properties were calculated and then compared between AD patients and
NC, adjusted for age, gender, mean frame-wise displacement for head motion. The significance threshold was set at p < 0.05. Maps I, II, and
III showed the spatial location of that WM-WM pair, the mean and standard deviation of HOCV, HOEC-GW, and HOEC-WG of that pair
in each group, and the comparison results.

http://www.fil.ion.ucl.ac.uk/spm
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RESULTS

Differences between AD and NC on LOFC

Compared to NC, AD patients showed smaller
LOFC between the right inferior temporal gyrus of
the limbic network and the right fornix (T = –4.557,
p = 0.034, FDR-corrected), as well as smaller LOFC
between the left middle orbitofrontal gyrus of DMN
and the left posterior corona radiata (T = –4.904,
p = 0.020, FDR-corrected). Meanwhile, compared to
NC, AD patients showed nearly significantly larger
LOFCs for two GM-WM pairs, between the right
middle temporal gyrus of DMN and the left supe-
rior/posterior corona radiata, respectively (superior
corona radiata: T = 4.255, p = 0.068, FDR-corrected;

posterior corona radiata: T = 4.341, p = 0.068, FDR-
corrected).

Differences between AD and NC on LOCV and
LOEC

Based on the group comparison results on LOFC,
we calculated the dynamic and directional properties
for four pairs of GM and WM regions. The LOCV
between the right middle temporal gyrus of DMN and
the left posterior corona radiata showed a larger tem-
poral variability in AD than NC (T = 2.600, p = 0.035,
FDR-corrected). The LOECs from the right mid-
dle temporal gyrus to the left superior and posterior
corona radiata showed larger EC in AD patients
than NC (to superior corona radiata: T = 4.995,

Fig. 7. Correlations of LOFC, LOEC, and LOCV with voxel-based GM volumes and MMSE. Each low-order cross-tissue FC metric was
correlated with the whole-brain voxel-based GM volumes and MMSE scores in all participants, adjusted for age, gender, mean frame-wise
displacement of head motion, and total intracranial volume (only for the GM volumes). The results for three types of FC metrics (LOFC,
LOEC, and LOCV) were organized as A, B, and C, respectively. For each metric, the correlation with MMSE was shown in the scatter
plot; and the correlation with GM volumes were shown in the 3D brain template, with the color bar indicating the T-value of correlation
coefficient (the warm and cold color indicating the positive and negative correlations, respectively). The multiple correction method was
based on Gaussian Random Field, with the significance threshold set at the voxel-level p < 0.005 (uncorrected) with a cluster-level p < 0.05
(FWE-corrected).
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Fig. 8. Correlations of HOFC, HOEC-GW, and HOEC-WG with voxel-based GM volumes and MMSE. Each high-order cross-tissue FC
metric was correlated with the whole-brain voxel-based GM volumes and MMSE scores in all participants, adjusted for age, gender, mean
frame-wise displacement of head motion, and total intracranial volume (only for the GM volumes). The results for three types of FC metrics
(HOFC, HOEC-GW, and HOEC-WG) were organized as A, B, and C, respectively. For each metric, the correlation with MMSE was shown
in the scatter plot; and the correlation with GM volumes was shown in the 3D brain template, with the color bar indicating the T-value of the
correlation coefficient (the warm and cold color indicating the positive and negative correlations, respectively). The correlation analysis was
not performed for HOCV, as it was not significantly different between AD and NC. The multiple correction method was based on Gaussian
Random Field, with the significance threshold set at the voxel-level p < 0.005 (uncorrected) with a cluster-level p < 0.05 (FWE-corrected).
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p < 0.001, FDR-corrected; to posterior corona radi-
ata: T = 3.950, p < 0.001, FDR-corrected).

Differences between AD and NC on HOFC,
HOCV, and HOEC

We obtained the HOFCs between any two WM
regions based on their LOFC profiles with the GM
regions in the DMN, and the GM regions in the
limbic network, respectively. By comparing these
HOFC metrics between the two groups, AD patients
showed larger HOFC between the left cingulate bun-
dle and the left tapetum based on their correlations
with the DMN’s GM regions (T = 5.122, p = 0.004,
FDR-corrected). The HOCV and HOEC metrics for
this pair (left cingulate bundle and left tapetum) with
the DMN were also computed and then compared
between AD and NC. No significant group difference
was found on the HOCV metric (T = 0.885, p= 0.380),
while the two HOEC metrics were both signifi-
cantly larger in AD than NC (HOEC-GW: T = 3.626,
p < 0.001; HOEC-WG: T = 2.762, p = 0.008).

Correlations analysis of cross-tissue FC metrics
with voxel-based GM volume and MMSE

All cross-tissue FC metrics that showed significant
difference between AD and NC were correlated with
voxel-based GM volumes and MMSE score in all par-
ticipants. The correlation results for LOFC, LOCV,
and LOEC metrics were demonstrated in Fig. 7. Inter-
estingly, the decreased LOFC in AD between the
left middle orbitofrontal gyrus and the left posterior
corona radiata was positively correlated with MMSE
(r = 0.506, p < 0.001) and the GM volumes in the
left hippocampus and middle temporal gyrus. The
increased FC metrics in AD (including two LOFCs
and two LOEC-GWs between the right MTG and
the left superior/posterior corona radiata) were neg-
atively correlated with MMSE (r = –0.298 ∼ –0.538,
p = 0.052 ∼ < 0.001) and the GM volumes in the left
hippocampus and middle temporal gyrus.

The correlation results for HOFC, HOCV, and
HOEC metrics were demonstrated in Fig. 8. The
increased HOFC in AD was significantly nega-
tively correlated with the GM volumes in the left
middle temporal gyrus, and negatively correlated
with MMSE with a tendency towards significance
(r = –0.281, p = 0.068). For the correlation analysis
results with voxel-based GM volumes, the location
and peak voxels of supra-threshold clusters were pro-
vided in Supplementary Table 3.

For the additional correlation analysis between
cross-tissue FC metric and voxel-based GM volumes
that were pre-processed with different smoothing ker-
nels (FWHM = 12 mm and 6 mm), the results showed
that the significant GMV correlates were located
in similar brain regions as the results of a 9 mm
smoothing kernel, as demonstrated in Supplementary
Figure 4.

DISCUSSION

Decreased LOFC of the limbic network in AD

The present study showed that the LOFC between
the right inferior temporal gyrus and the right fornix
was smaller in AD patients than NC, and this LOFC
was positively correlated with cognitive function
(measured by the MMSE score). The fornix is a
large axonal bundle that constitutes a core element of
the limbic circuits as the inflow and output pathway
between the hippocampus and the medial tempo-
ral lobe [55]. Its demyelination and axonal loss had
been consistently identified in AD [56–58]. Mean-
while, the inferior temporal gyrus was involved in
memory maintenance and retrieval [59]. The atrophy
and synaptic loss in the inferior temporal gyrus were
found in AD patients and were associated with mem-
ory impairment [60]. The decreased LOFC between
the right inferior temporal gyrus and right fornix pos-
sibly reflected the disruption in the circuit of memory
of AD patients.

Decreased LOFC of the DMN in AD

Our study also showed decreased LOFC between
the left middle orbitofrontal gyrus and the left pos-
terior corona radiata in AD patients, compared to
NC; moreover, this LOFC was positively correlated
with MMSE and the left hippocampal GM volumes.
The orbitofrontal cortex has been involved in vari-
ous cognitive functions, including memory, cognitive
control, and decision making, via its massive fiber
connections to the cortical and subcortical regions,
such as the parahippocampal gyrus, entorhinal cortex,
and cingulate cortex [61, 62]. Accumulative evidence
supported the involvement of the left posterior corona
radiata in cognitive control and memory [63–65].
A greater axonal volume and better myelination in
this WM structure were correlated with better work-
ing memory performance in healthy adults [66]. The
positive relationship between this LOFC and the left
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hippocampal GM volumes, observed in our study,
further corroborated this LOFC’s disruption as a
sign of AD pathological changes, given that the hip-
pocampal atrophy was a pathological hallmark of AD
patients [60, 67].

Increased LOFC, LOCV, and LOEC of the DMN
in AD

Our results showed that two cross-tissue LOFCs
were larger in AD patients than NC. They were
between one GM region in the right hemisphere (mid-
dle temporal gyrus) and two WM regions in the left
hemisphere (superior and posterior corona radiata);
and the two LOFCs were both negatively correlated
with MMSE and the GM volumes in the left hip-
pocampus and left middle temporal gyrus. Moreover,
the LOCV for the GM-WM pair (right middle tempo-
ral gyrus and left posterior corona radiata) was higher
in AD than NC. Furthermore, the directionality from
this GM region to both WM regions was stronger in
AD, and the two LOEC-GWs were both negatively
correlated with MMSE and the GM volumes in the
left hippocampus and middle temporal gyrus.

Increased neural activity has been noted in AD
and older adults with amyloid deposition, possibly
reflecting neural plasticity to alleviate inefficient neu-
ral processes [68, 69]. Several studies reported higher
neural activation in the right middle temporal gyrus in
AD than NC during tasks and rest [70–72]. Evidence
showed that the left medial temporal lobe structures
showed more severe atrophy and neuropathologi-
cal damage than their right-sided counterparts did
[73, 74]. Hence, the increased neural activity in the
right middle temporal gyrus might supplement the
contralateral impairment. The superior and posterior
corona radiata were both involved in memory via
their afferent and efferent projections connecting the
ipsilateral cortical and subcortical regions. As such,
the increased LOFC metrics between the contralat-
eral GM-WM pairs might serve as a remedy for the
left neurodegenerative damages [64, 75–77]. The two
GM-WM pairs also showed increased LOCV and
LOEC-GWs in AD, implying that their interaction
was more flexible and robust, and the direction was
starting from the right GM region, proceeding to the
left WM regions. Moreover, the negative correlations
between the four cross-tissue metrics (two LOFCs
and two LOEC-GWs) and the GM volumes in the
left hippocampus and middle temporal gyrus further
corroborated their compensatory function.

Dichotomy between the decreased and increased
LOFCs changes in AD

For the GM regions that were particularly vul-
nerable in AD, their LOFCs with WM showed
both decreased and increased changes. Interestingly,
the two types of LOFC changes showed distinc-
tive spatial distribution and structural correlations.
The decreased cross-tissue LOFCs were between the
intra-hemispheric GM and WM regions, while the
increased ones were between the inter-hemispheric
GM and WM regions. The decreased cross-tissue
LOFCs were positively correlated with the GM
volumes in the memory-related regions, while the
increased ones were negatively correlated with those
GM volumes.

Between the decreased and increased LOFCs in
AD patients, we observed a clear dichotomy on
the locations of GM-WM pairs, and on their oppo-
site relationships with MMSE and GM volumes.
As discussed in the above subsections, we con-
sidered that the increased LOFC changes in AD
might reflect a complementary mechanism triggered
by the neurodegenerative changes that prominently
affected the intra-hemispheric structural and func-
tional integrity. In AD patients, the ineffectiveness
in the intra-hemispheric cross-tissue communication
was possibly accompanied with the enhanced inter-
hemispheric connections as compensation. Such
consequence of events echoed the model of cas-
cading network failure of AD, which suggested a
load-shifting process served as a transient remedy
attempting to maintain function [13, 78, 79]. The
intra- and the inter-hemispheric difference between
the two types of LOFC changes also reminded us of
the dedifferentiation theory of aging, which suggests
a gradual loss of structural and functional specifica-
tion [80, 81]. Although our finding could not resolve
the debate of various theories and models regarding
dementia, it offered new evidence with the cross-
tissue FC to help clarify the pathological development
of AD.

Increased HOFC and HOEC based on the DMN
in AD

No significant difference was shown on the HOFC
based on the limbic network’s GM regions. However,
based on the correlation patterns with the DMN’s GM
regions, we found an increased HOFC between the
left cingulum and the left tapetum in AD patients.
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The cingulum had extensive connections with the
bilateral DMN and limbic regions, including the pre-
cuneus/posterior cingulate cortex and hippocampus
[82–85]. The tapetum contains the splenium and
body fibers of the corpus callosum, connecting to
the bilateral temporal lobes [77, 86]. Previous studies
showed that the tapetum provided the fiber trajec-
tories connecting with the bilateral hippocampi that
were closely linked to the DMN [87]. As the cingulum
and tapetum were functionally and structurally con-
nected with the DMN, the neurodegenerative changes
in the DMN could increase the similarity between
the two WM regions [88]. Our finding on the nega-
tive correlation between this HOFC and MMSE and
the GM volume in the left middle temporal gyrus
supported this HOFC as an indicator of neurodegen-
erative change.

We also found that the directional properties for
the WM pair increased in AD patients, with higher
HOEC-GW and HOEC-WG. As the cingulum and
tapetum interconnected the bilateral memory-related
structures, the enhanced similarity in bi-directional
cross-tissue FCs possibly implied that the two WM
bundles had similar information exchange directions
and their roles in the AD brain’s hierarchical organi-
zation were comparable.

Limitations

The present study was subject to a few limita-
tions. Firstly, our study’s eligible participants were
relatively small, including 30 AD patients and 37
NC drawn from the ADNI database. Secondly, our
study restricted the cross-tissue pairs for the GM
regions in two networks susceptible to AD dam-
age; nevertheless, more GM regions affected by
AD pathology warranted future studies. Thirdly, the
ADNI dataset that we used had a relatively long TR
(3 s), which might not be optimal to precisely esti-
mate the EC for the GM-WM pairs with a short
lag time in their hemodynamic response functions.
Nevertheless, the lag time would increase with a
longer distance, up to 3 s between the posterior
cingulate cortex and the deep WM [89]. In our
study, the LOEC-GWs that showed significant dif-
ferences between AD and NC were located across
the bilateral hemispheres. Finally, although the cross-
tissue FC and the high-order FC metrics have shown
promising applications in diverse research areas, their
biological meanings still needed more studies to
elaborate.

Conclusion

With the GMs susceptible to neurodegenerative
damage of AD as our ROIs, we generated low- and
high-order cross-tissue FCs, indexed by their static,
dynamic and directional properties. Our findings
showed both decreased and increased cross-tissue
FCs in AD, which had differential spatial locations
and in opposite correlations with the memory-related
GM volumes and cognitive function. These decreased
and increase cross-tissue FCs were consistent with
the neurodegenerative and compensatory changes of
AD, suggesting that they could be useful neuroimag-
ing biomarkers.
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